Discrete Mathematics - Second Midterm Exam Warm-up

- 1. Consider the graph G: (i) $K_{3,4}$, (ii) C_6 , (iii) Petersen graph.
 - a) What is the number of vertices and the number of edges of G?
 - b) Write down the degree sequence of G.
 - c) Determine the adjacency matrix of G.
 - d) Is this graph regular? Explain shortly why.
 - e) Is this graph bipartite? If yes, write down the vertex classes. If no, explain shortly why.
- 2. For a graph G pictured below draw the following subgraphs: (i) $G[\{u_1, u_3, u_5, u_6, u_8\}]$, (ii) $G - \{u_1, u_2, u_5\}$, (iii) $G[\{u_1u_3, u_1u_8, u_2u_5, u_2u_6, u_5u_8\}]$.

- 3. Draw all nonisomorphic graphs with 6 vertices and 4 edges.
- 4. Are these graphs isomorphic? If yes, write down an isomorphism. If no, explain why.

5. Determine the number of different labelings of vertices of graph G by numbers $\{1, 2, \ldots, v_G\}$.

6. Find the number of walks of length 4 between v_1 and v_2 in the graph given below.

7. Let $A_{t\times t}$ be a $t\times t$ matrix with 0's on the main diagonal and 1's beside that. Find the number of connected components of the graph G given by the following adjacency matrix. What is the structure of graph G?

$$A(G) = \begin{bmatrix} A_{k \times k} & 0 & 0 \\ 0 & A_{n \times n} & 0 \\ 0 & 0 & A_{m \times m} \end{bmatrix}$$

- 8. Find the number of triangles (cycles C_3) in K_6 and the number of walks of length 3 between two distinct vertices of K_6 .
- 9. Find the adjacency matrix and the incidence matrix of the path P_7 .
- 10. Determine $\kappa(G)$ and $\lambda(G)$, where G is (i) W_{10} , (ii) the Petersen graph, (iii) K_6 .
- 11. Find all cut vertices and all cut edges of the graph given below:

12. Determine whether given graph has an Euler tour or an Euler walk. If yes, use Fleury's algorithm to find it. If no, explain why.

- 13. Determine, whether the graph W_{100} has a Hamilton path/cycle. If yes, find such a path. If no, explain why.
- 14. Does a graph with degree sequence (i) (3, 3, 3, 3, 3, 3, 3, 3, 3), (ii) (6, 3, 3, 3, 3, 2, 2) have an Euler tour? Explain your answer.
- 15. Which of the graphs (i) $K_{n,n}$, (ii) $K_{n,n+1}$, (iii) $K_{n,2n}$ contains a Hamilton cycle or a Hamilton path? If the graph contains a Hamilton cycle, can you prove it using Ore's theorem? How about Dirac's theorem?

Hints and solutions

1.(i) a) $v(K_{3,4}) = 7, e(K_{3,4}) = 12$ b) (3, 3, 3, 3, 4, 4, 4)c) $A(K_{3,4}) = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$ d) no e) yes 1.(ii) a) $v(C_6) = e(C_6) = 6$ b) (2, 2, 2, 2, 2, 2)c) $A(C_6) = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$ d) yes e) yes 1.(iii) G - Petersen graph a) v(G) = 10, e(G) = 15b) (3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3)d) yes e) no 2. (i) (ii) (iii) $u_7 \bullet$ •*u*₃ u_6 bu_3 $u_6 \bullet$ $u_6 \bullet$ u_5 $\tilde{u_4}$ $\tilde{u_5}$

 $\bullet u_2$

 bu_3

c) no isomorphism - there are two paths of length two between vertices of degree 5 in the graph on the left, and only one such path in the graph on the right

5. a) $\binom{6}{2} \cdot \binom{4}{2} = 90$, b) $8 \cdot 7 \cdot \binom{6}{3} \cdot 3 = 3360$, c) $7 \cdot 6 \cdot 5 \cdot \binom{4}{2} = 1260$

6. There are $3 \cdot 2 + 2 \cdot (4 + 1 + 3 + 3 + 2) = 32$ such walks since

$$A^{2}(G) = \begin{bmatrix} 3 & 2 & 2 & 2 & 2 & 2 \\ 2 & 4 & 1 & 3 & 3 & 2 \\ 2 & 1 & 3 & 2 & 1 & 3 \\ 2 & 3 & 2 & 5 & 2 & 3 \\ 2 & 3 & 1 & 2 & 3 & 1 \\ 2 & 2 & 3 & 3 & 1 & 4 \end{bmatrix}$$

7. Three connected components isomorphic, respectively, to K_k , K_n and K_m .

8. 20 triangles, 21 walks of length 3 between any two distinct vertices

9.
$$M(P_7) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
 $A(P_7) = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$

10. (i) $\kappa(W_{10}) = 3$, $\lambda(W_{10}) = 3$ (ii) *G* - Petersen graph, $\kappa(G) = 3$, $\lambda(G) = 3$

(iii) $\kappa(K_6)$ - not defined, $\lambda(K_6) = 5$

11. cut vertices: v_3, v_9, v_{10}, v_{11} , cut edges: $v_3v_4, v_8v_9, v_9v_{10}, v_{11}v_{12}$

12. Euler tour: $v_1v_2, v_2v_3, v_3v_4, v_4v_1, v_1v_6, v_6v_3, v_3v_8, v_8v_5, v_5v_2, v_2v_7, v_7v_4, v_4v_5, v_5v_6, v_6v_7, v_7v_8, v_8v_1$

13. W_{100} contains a Hamilton cycle - start from the middle vertex, then go around the wheel and back to the middle vertex

14. (i) doesn't have two, take a graph consisting of two copies of K_4 , (ii) no, four vertices of odd degree

15. $K_{n,n}$ contains a Hamilton cycle (one can use both Ore's theorem and Dirac's theorem), $K_{n+1,n}$ contains a Hamilton path, $K_{n,2n}$ contains a Hamilton path only for n = 1